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In recent years, pilot interaction with automated flight 
control systems has become a major concern in the 
transport industry (Funk et al., 1999).  This problem has 
variously been termed as lack of mode-awareness, mode-
confusion, or automation-surprises (Woods, Sarter, and 
Billings, 1997).  Two factors are repeatedly cited in 
accident and incident reports and in the scientific 
literature as being responsible for such breakdowns:  (1) 
The interface between the user and the machine provides 
inadequate information about the status of the machine 
(Indian Court of Inquiry, 1992; Norman, 1990; Billings, 
1997); (2) The user has an inadequate “mental model” of 
the machine’s behavior (Javaux and De Keyser, 1998; 
Sarter and Woods, 1995).  Both factors may limit the 
user's ability to anticipate reliably the next configuration 
(e.g., mode) of the machine, and hence may lead to false 
expectations, confusion, and error (Degani, Shafto, and 
Kirlik, 1998).  In this paper, we shall focus on the first 
factor – the inadequacy of the interface. 

In high-risk systems, such as commercial aviation, faulty 
interaction of the user with the machine has lead to 
catastrophic results (Mellor, 1994).  This faulty 
interaction has been variously attributed to a combination 
of human and machine problems.  However, the 
distinction between human error, inadequate training, lack 
of situation awareness, and interface design errors is 
blurred (see e.g. Aviation Week and Space Technology, 
1995).  One aspect is the complexity of automatic control 
systems and the lack of rigorous methods for their 
systematic analysis and evaluation (RTCA, 1999).  

The objective of the present paper is to suggest a formal 
perspective for examining human-automation interaction.  
The paper is organized as follows: We first discuss three 
elements that are part of this interaction – the interface, 
the user’s model, and the task – and present several 

possible discrepancies among these elements.  Following 
this discussion, we describe the vertical flight modes in 
the autopilot of a modern commercial aircraft, and present 
an incident involving these modes.  We then analyze in 
detail, the pilots' interaction with the autopilot and 
identify discrepancies that lead to such mishaps. 

FORMAL REPRESENTATION 

A given machine, for example an autopilot, has a variety 
of modes.  Each mode defines a specific behavior (e.g., 
“Vertical-Speed”, “Altitude Hold”, “Glide-Slope”, etc. in 
a modern autopilot).  The pilot must interact with this 
autopilot in order to perform a specified task (e.g., climb 
to 9,000 feet at a rate of 2,500 feet per minute, maintain 
9,000 feet, or descend toward the runway).  In the 
interaction between the user and the machine, three 
elements play a major role: (1) The set of tasks, or task-
specifications, that the user must perform in order to 
operate the machine (e.g., engage “Vertical Speed” mode 
and note automatic transitions among modes); (2) The 
user-model of the machine's behavior, (e.g., what the pilot 
knows about how the aircraft behaves from training and 
from aircraft manuals) and (3) the interface through 
which user obtains information about the machine’s 
behavior (e.g., the flight mode annunciator).  These three 
elements must be suitably matched in order to insure 
correct and reliable user-machine interaction. 

Figure 1 describes these elements.  Each of the three 
circles represents the region where one of the elements is, 
by itself, “adequate”.  For the purpose of this discussion, 
we shall always assume that the machine-behavior and 
the task-specification are given, valid, and correct.  
Therefore, we are interested in considering the interplay 
between the user-model and interface with respect to the 
machine-behavior and task-specification. 



 

Figure 1.  Interrelations. 

 

Region 1 represents the situation in which all three 
elements are adequate, and correct interaction is possible.  
Region 2 represents the situation in which the task-
specification and the user-model are adequate, but the 
interface is inadequate.  Region 3 represents the situation 
in which the task specification and the interface are 
adequate, but the user-model is not.  Finally, region 4 
represents the case in which both the interface and the 
user-model are inadequate for the task. 

Let's consider all the possible discrepancies between the 
machine’s behavior, the user-model, and the interface in 
relation to a given task that the user must perform.  To 
describe such discrepancies in a precise and formal (i.e., 
mathematical) way, we need some method, or language, 
for representation. 

More than 80 percent of the computer-code in modern 
Automatic Flight Control Systems (AFCS) consists of 
logical statements (the rest consists of continuous 
equations).  A discrete representation of states and events 
is a natural medium for describing the behavior of 
autopilots and other components of automatic flight 
control systems (see e.g. Sherry and Polson, 1999).  This 
representation is easily extended to also represent the 
mode annunciation on the interface (Jacob, 1983; Parnas, 
1969), the user’s task (specifications) as well as the user’s 
model of the machine’s behavior.   

A basic fragment of such a representation is a state 
transition that can be used to describe a statement such as, 
“If the user executes event α when the machine is in state 
1 and condition C is TRUE, then the system transitions to 
state 2.”  Many of the informal statements concerning the 
behavior of automated control systems are of this nature: 
“If the pilot pushes button x when the aircraft is in 
CRUISE mode and the descent profile is armed, then the 
aircraft transitions to the DESCENT mode.”  A discrete 
event representation such as the Finite State Machine 
theory and its corresponding state-transition-diagrams are 
the formal mechanism for collecting such fragments into 
a whole (Harel, 1988).  
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Figure 2.  Simple machine (complete model) 

Figure 2 is a State Transition Diagram of a simple 
machine.  The machine starts at state 1, and upon 
execution (by the user) of event “α”, moves along to 
either state 2 or state 3, according to whether the 
condition “C1” is TRUE or FALSE.  The dashed lines 
represent transitions that take place automatically and 
instantaneously.  Thus, if state 2 is reached, the system 
moves to state 5 immediately, while if it reaches state 3, it 
moves to either state 5 or to state 4 depending on whether 
condition "C2" is TRUE or FALSE. 

Suppose that the task specification is to drive the system 
from state 1 to state 5, via state 3 (because state 2 may 
cause some undesired behavior, e.g., deploying thrust-
reversers in flight).  To do this correctly, it is necessary to 
know whether condition “C1” is TRUE or FALSE, 
because only FALSE will lead us to state 5 via state 3.  
However, since we do not care whether state 4 is visited 
or not, condition "C2" is irrelevant for us.  Figure 3(a) is a 
reduced, yet adequate, user-model for this machine.  

 Figure 3(a).  Figure 3(b) 

Now let's consider the interaction between the interface 
and the user-model and relate this to the regions in Figure 
1.  The machine we are still dealing with is the one 
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described in Figure 2, and our task specification is to 
drive the system from state 1 to state 5, via state 3.  The 
first case is that our operator (e.g., pilot) has a correct 
user-model, but is not provided with an adequate interface 
(e.g., indicating whether C1 is true or false).  This 
situation, in which the user-model is adequate but the 
interface is inadequate, is represented by region 2 of 
Figure 1.  Clearly, in this case, correct task execution 
cannot be guaranteed.  In the second case, the pilot has an 
inadequate user-model. That is, the pilot is not told about 
the existence of condition C1, and therefore his or her 
user-model looks like Figure 3(b).  According to this 
user-model, initiating event α always drives the machine 
to state 5.  A correct display that indicates the status of 
condition C1 would not be of any help here!  The user 
would not be able to relate the status of condition C1 
(TRUE, FALSE) to the behavior of the machine.  This 
situation, in which the user-model is inadequate but the 
interface is adequate, is represented by region 3 of Figure 
1.  Obviously, correct task execution cannot be 
guaranteed here.  Finally, the worst case occurs when 
both the user-model and the interface are inadequate for 
the task (Region 4).  

AUTOPILOT EXAMPLE 

In this section we shall describe a specific autopilot and 
its behavior, show the interface, and provide an excerpt 
from an incident that took place while using this 
autopilot.  Specifically, we shall address pilot interaction 
with this autopilot during the capture maneuver in which 
the autopilot transitions from climb or descent to level 
flight (see Degani and Heymann, submitted, for a formal 
and model-based analysis of this example).   

Behavior 

The sequence of actions in using this autopilot to climb to 
a higher altitude goes like this: The aircraft is at some 
initial altitude (say 5,000 feet).  The pilot selects an 
altitude to which the autopilot should climb and level-off 
at (e.g., 9,000 feet).  The pilot then engages a climb mode 
such as “vertical speed”, and the aircraft starts to climb.  
(Figure 4 is a profile describing this scenario.)  The 
current altitude of the aircraft is depicted in the pointed 
box in the lower left corner and the selected altitude is 
depicted in the upper-right box.  

Somewhere prior to reaching 9,000 feet, the autopilot 
automatically transitions to the “Capture” mode and starts 
the (altitude) capture maneuver.  In Figure 4 the capture-
start altitude is 7,000 feet.  Above 7,000 feet the autopilot 
commands a parabolic trajectory in which the climb-rate 
varies as the aircraft gradually transitions to level flight 
(at 9,000).  This trajectory depends on the aircraft's climb-
rate, altitude, and acceleration.  The main point is that the 
altitude, at which the transition to the “Capture” mode 
takes place, varies.  The pilot has no pre-knowledge of 
this altitude. 

Figure 4.  Climb profile 

Interface 

Figures 5(a) and 5(b) are schematic illustrations of the 
“Guidance Control Panel” (GCP) and “Electronic 
Attitude Display Indicator (EADI)” of this autopilot, 
respectively. 
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Figure 5(a). Guidance Control Panel.

Figure 5(b). Electronic Attitude Display Indicator.



 

The GCP illustrated in Figure 5(a) includes buttons for 
engagement (by the pilot) of climb/descend and hold-
altitude modes.  In the top portion of the GCP is a 
window indicating the selected altitude setting.  The pilot 
can reset the altitude setting by rotating the altitude knob.  

Information on the current mode of the aircraft is 
provided on the “Flight Mode Annunciator” located on 
the top portion of the EADI.  In Figure 5(b) the current 
vertical mode, displayed in the right-most window, is 
“Capture” (the “Thrust” and “Lateral” modes of the 
aircraft are beyond the scope of this paper).  The altitude 
tape, which provides the pilot with the current altitude of 
the aircraft, is displayed on the right side of the EADI.  
By viewing both the GCP and the EADI, the pilot has 
knowledge of the GCP altitude setting, the active vertical 
mode, and the current aircraft altitude at any time. 

Incident 

The following is an altitude deviation incident, involving 
this autopilot, which was reported to NASA’s Aviation 
Safety Reporting System (ASRS).  An altitude deviation 
(or “altitude bust” in aviation jargon) is a situation in 
which the aircraft, for whatever reason, does not level off 
at the intended altitude. 

On climb to 27,000 feet and leaving 26,500 feet. 
Memphis Center gave us a clearance to descend to 
24,000 feet.  The aircraft had gone to “Capture” 
mode when the first officer selected 24,000 feet on 
the GCP altitude setting… and the aircraft continued 
to climb at approximately 300 feet-per-minute.  There 
was no altitude warning and this “altitude bust” 
went unnoticed by myself and the first officer, due to 
the slight rate-of-climb.  At 28,500, Memphis Center 
asked our altitude and I replied 28,500 and started 
an immediate descent to 24,000 feet (ASRS report # 
113722). 

ANALYSIS 

We shall now examine pilot interaction with this autopilot 
while in “Capture” mode.  The action that we will 
consider here is setting the altitude window to a value that 
is behind the aircraft – just as it happened in the incident.  
We are climbing toward 27,000, the aircraft is now at 
26,500 feet, and at this moment we get a clearance to 
descend back to 24,000 feet.  24,000 is lower than 26,500 
and is behind the direction and current altitude of the 
aircraft.  Let us consider a similar situation at somewhat 
different altitudes.  We are at 5,000 feet climbing to 9,000 
in “Vertical Speed” mode.  At 7,000 the autopilot 
transitions from “Vertical Speed” mode (which was 
initially engaged by the pilot) to “Capture” mode (which 
was automatically engaged by the autopilot).  The aircraft 
starts the parabolic trajectory to capture 9,000 feet.  Now 
at an altitude of 8,500 feet we get a new clearance.  Let us 
see what the aircraft will do: 

If we get a clearance to descend and maintain 6,000 feet 
and we set this value in the GCU altitude window, the 
aircraft will not honor this setting and, instead, continue 
its climb at the current vertical speed, indefinitely.  This 
behavior is called “kill the capture” -- and kill it, it does.  
This is exactly what happened in the above-mentioned 
incident.  The profile depicted in Figure 6 describes this 
behavior. 

Figure 6.  Set altitude to “below” capture-start. 

On the other hand, if we get a clearance to descend and 
maintain 8,000 feet, and we set this value in the GCU 
altitude window, the aircraft will honor this setting, dive 
down and capture 8,000 feet (Figure 7). 

Figure 7.  Set altitude to “above” capture-start. 
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The autopilot behavior is perplexing; it responds 
differently to the same pilot action.  Setting the altitude to 
a value behind the current aircraft altitude results in two 
different responses: In the first case the aircraft will 
continue at the current climb-rate and “kill the capture”.  
In the second case the aircraft will capture the newly set 
altitude.  So how can the pilot anticipate what the aircraft 
will do in each case?   

It turns out that there is a hidden condition here, that 
revolves around the altitude at which the aircraft 
transitions to the “Capture” mode (7,000 feet in our 
example): If the newly set altitude is below (e.g., 6,000 
feet) the “start capture altitude”, then the aircraft will kill 
the capture.  But if the newly set altitude is above (e.g., 
8,000 feet) the “start capture altitude”, the aircraft will 
capture the specified altitude. 

Do pilots know about this behavior and the condition?  
No.  It’s not in the manual nor is it mentioned in ground 
school or Initial Operating Experience (IOE) -- it is 
practically unknown!  Now we are not talking about some 
minor deficiency, but a critical maneuver that sometimes 
takes place very close to the ground.  The pilots’ user-
model is inadequate for the task of capturing an altitude 
after resetting the altitude to a value behind the aircraft.  
If we go back to our earlier discussion, we have a 
condition in which the user-model is inadequate for the 
task.  This deficiency corresponds to region 3 in Figure 1.   

Now, let’s say that we have provided this information to 
the flight crews and thereby updated their user-model to 
include the condition (“altitude capture start”) and the two 
possible outcomes of setting the new altitude.  
Presumably now we should be out of Region 3 and in 
Region 1 and everything should be OK.   

Yes? 

Actually, not.  The display is also inadequate for the task 
– and here is why: To resolve what the aircraft will do we 
need to know the altitude at which the autopilot 
transitions to capture (e.g., 7,000 feet).  But in practice, it 
is almost impossible to obtain this value with the current 
display.  First, the pilot has no preview of this value and 
the interface does not display it.  Secondly, the transition 
to the “Capture” mode happens automatically.  In order to 
obtain the altitude at which the autopilot transitions to 
“Capture”, the pilot must "hunt" for the automatic 
transition, and at that very moment look down to the 
altitude tape on the interface and catch the aircraft altitude 
as it rolls by.  Thirdly, this altitude value is not retained 
by the display; once the transition takes place, the value is 
gone and there is no way to retrieve it.  For all practical 
purpose, it is impossible to reliably obtain this value.  The 
current display is indeed inadequate for the task. 

To recap, the situation just described actually corresponds 
to Region 4 in Figure 1 where both the user-model and 
the interface are inadequate for the task: the pilots do not 
know about the start-capture condition and the interface 

does not provide the start-capture value.  Attempts to 
solve the problem by updating the user-model to include 
this condition will get us out of Region 4 into – Region 2.  
Yes, the pilot is now aware of the condition, but the 
interface does not provide the capture-start value; the 
task-specification and the user-model are now adequate, 
but the interface is, still, inadequate.  To this end, the 
interface is incorrect and correct task execution cannot be 
guaranteed. 

And here we are stuck.  The only way to remove this 
deficiency is by modifying the interface: either by 
providing the value itself (which will still require the pilot 
to perform a mental calculation to resolve what the 
aircraft will do) or some qualitative indicator that will 
resolve whether or not capture will take place.  Finally, 
one can also redesign the autopilot behavior, but that, of 
course, is beyond the scope of this paper.  

CONCLUSIONS 

There are two kinds of reactions to such problems –that 
is, after the pilots become confused.  Some pilots blame it 
on themselves, on being inattentive and out-of-the-loop.  
Others blame it on the autopilot, write it up in the log as a 
malfunction and demand that a mechanic fix the 
autopilot.   

But the problem, of course, is neither of the above: it’s 
not about being inattentive and the autopilot always 
checks OK.  Such interface inadequacy limits pilots’ 
ability to interact reliably with the autopilot and generates 
confusion, apprehension, and mistrust in automation.  
Contrary to common belief, these types of problems, 
which unfortunately are not rare in present-day automated 
control systems, cannot be sufficiently resolved with 
further training, improved situation awareness, or by 
updating aircraft manuals. 

The deeper issue is not about this specific autopilot or its 
interface – it’s about design and evaluation of automated 
control systems.  The fact of the matter is that the people 
who designed it did their best to provide a sound 
interface, and the certification officials who approved it 
also evaluated it to the best of their abilities.  Present-day 
automated control systems are very complex and user-
interaction is, inevitably, complex as well; there is no 
escape from this reality, at least by today's standards.  

The naked truth is that current methods for designing and 
evaluating human-automation interactions are, in 
themselves, inadequate.  Current methods, which consist 
of “what-if” questions, cognitive walk-through, 
simulations, and experimentation, are simply not 
systematic and rigorous enough to cover all possible 
pilot-automation interactions.  This limitation is what lead 
to the design deficiency that we described in this paper.  
There is an urgent need for better design and evaluation 
methods from avionics vendors, airframe manufacturers, 
and certification officials (RTCA, 1999).   



 

The formal approach discussed in this paper is a way to 
start considering such human-automation problems from 
a more systematic perspective.  A perspective that takes 
into account the actual behavior of the automation and the 
specified operational tasks and then asks whether the 
user-model and the interface are adequate for correct and 
reliable task-execution.  A more ambitious objective is to 
develop methods and algorithms for a formal “synthesis” 
of the user-model, interface, and task specification 
elements.  Such a rigorous and systematic methods for 
designing and evaluating large and complex human-
automation interaction are indeed feasible.  Initial steps 
towards the development of such design methods have 
recently been initiated (Heymann and Degani, 
forthcoming).  The increasing complexity of the 
automated systems, the lack of systematic 
design/evaluation methods, and the diminishing tolerance 
to catastrophic failures and its intolerably high cost urge 
us to be satisfied with nothing less.  
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