
PILOT-AUTOPILOT INTERACTION: A FORMAL PERSPECTIVE

Asaf Degani
MS: 262-4

NASA Ames Research Center
Moffett Filed, CA 94035-1000

adegani@mail.arc.gov

Michael Heymann
Department of Computer Science

Technion, Haifa 32000, Israel
heymann@cs.technion.ac.il

This paper discusses a formal perspective to the analysis of user interaction with machines, in general, and pilot
interaction with automated flight control systems, in particular. It addresses the issue of correct interaction between
the user and the machine by asking whether the information provided to the user about the machine, and the display
of this information, enables the user to perform his or her tasks reliably and successfully. We explain this
perspective by looking at one example of pilots' interaction with a modern autopilot.

Theme: Design and evaluation - user-centered design methods

Keywords: Automation, formal methods, design methods, certification.

PILOT-AUTOPILOT INTERACTION:

A FORMAL PERSPECTIVE

Asaf Degani

San Jose State University
and NASA Ames Research Center, CA

adegani@mail.arc.gov

Michael Heymann
Department of Computer Science

Technion, Israel
heymann@cs.technion.ac.il

This paper discusses a formal perspective to the analysis of user interaction with machines, in
general, and pilot interaction with automated flight control systems, in particular. It addresses the
issue of correct interaction between the user and the machine by asking whether the information
provided to the user about the machine, and the display of this information, enables the user to
perform his or her tasks reliably and successfully. We explain this perspective by looking at one
example of pilots' interaction with a modern autopilot.

In recent years, pilot interaction with automated flight
control systems has become a major concern in the
transport industry (Funk et al., 1999). This problem has
variously been termed as lack of mode-awareness, mode-
confusion, or automation-surprises (Woods, Sarter, and
Billings, 1997). Two factors are repeatedly cited in
accident and incident reports and in the scientific
literature as being responsible for such breakdowns: (1)
The interface between the user and the machine provides
inadequate information about the status of the machine
(Indian Court of Inquiry, 1992; Norman, 1990; Billings,
1997); (2) The user has an inadequate “mental model” of
the machine’s behavior (Javaux and De Keyser, 1998;
Sarter and Woods, 1995). Both factors may limit the
user's ability to anticipate reliably the next configuration
(e.g., mode) of the machine, and hence may lead to false
expectations, confusion, and error (Degani, Shafto, and
Kirlik, 1998). In this paper, we shall focus on the first
factor – the inadequacy of the interface.

In high-risk systems, such as commercial aviation, faulty
interaction of the user with the machine has lead to
catastrophic results (Mellor, 1994). This faulty
interaction has been variously attributed to a combination
of human and machine problems. However, the
distinction between human error, inadequate training, lack
of situation awareness, and interface design errors is
blurred (see e.g. Aviation Week and Space Technology,
1995). One aspect is the complexity of automatic control
systems and the lack of rigorous methods for their
systematic analysis and evaluation (RTCA, 1999).

The objective of the present paper is to suggest a formal
perspective for examining human-automation interaction.
The paper is organized as follows: We first discuss three
elements that are part of this interaction – the interface,
the user’s model, and the task – and present several

possible discrepancies among these elements. Following
this discussion, we describe the vertical flight modes in
the autopilot of a modern commercial aircraft, and present
an incident involving these modes. We then analyze in
detail, the pilots' interaction with the autopilot and
identify discrepancies that lead to such mishaps.

FORMAL REPRESENTATION

A given machine, for example an autopilot, has a variety
of modes. Each mode defines a specific behavior (e.g.,
“Vertical-Speed”, “Altitude Hold”, “Glide-Slope”, etc. in
a modern autopilot). The pilot must interact with this
autopilot in order to perform a specified task (e.g., climb
to 9,000 feet at a rate of 2,500 feet per minute, maintain
9,000 feet, or descend toward the runway). In the
interaction between the user and the machine, three
elements play a major role: (1) The set of tasks, or task-
specifications, that the user must perform in order to
operate the machine (e.g., engage “Vertical Speed” mode
and note automatic transitions among modes); (2) The
user-model of the machine's behavior, (e.g., what the pilot
knows about how the aircraft behaves from training and
from aircraft manuals) and (3) the interface through
which user obtains information about the machine’s
behavior (e.g., the flight mode annunciator). These three
elements must be suitably matched in order to insure
correct and reliable user-machine interaction.

Figure 1 describes these elements. Each of the three
circles represents the region where one of the elements is,
by itself, “adequate”. For the purpose of this discussion,
we shall always assume that the machine-behavior and
the task-specification are given, valid, and correct.
Therefore, we are interested in considering the interplay
between the user-model and interface with respect to the
machine-behavior and task-specification.

Figure 1. Interrelations.

Region 1 represents the situation in which all three
elements are adequate, and correct interaction is possible.
Region 2 represents the situation in which the task-
specification and the user-model are adequate, but the
interface is inadequate. Region 3 represents the situation
in which the task specification and the interface are
adequate, but the user-model is not. Finally, region 4
represents the case in which both the interface and the
user-model are inadequate for the task.

Let's consider all the possible discrepancies between the
machine’s behavior, the user-model, and the interface in
relation to a given task that the user must perform. To
describe such discrepancies in a precise and formal (i.e.,
mathematical) way, we need some method, or language,
for representation.

More than 80 percent of the computer-code in modern
Automatic Flight Control Systems (AFCS) consists of
logical statements (the rest consists of continuous
equations). A discrete representation of states and events
is a natural medium for describing the behavior of
autopilots and other components of automatic flight
control systems (see e.g. Sherry and Polson, 1999). This
representation is easily extended to also represent the
mode annunciation on the interface (Jacob, 1983; Parnas,
1969), the user’s task (specifications) as well as the user’s
model of the machine’s behavior.

A basic fragment of such a representation is a state
transition that can be used to describe a statement such as,
“If the user executes event α when the machine is in state
1 and condition C is TRUE, then the system transitions to
state 2.” Many of the informal statements concerning the
behavior of automated control systems are of this nature:
“If the pilot pushes button x when the aircraft is in
CRUISE mode and the descent profile is armed, then the
aircraft transitions to the DESCENT mode.” A discrete
event representation such as the Finite State Machine
theory and its corresponding state-transition-diagrams are
the formal mechanism for collecting such fragments into
a whole (Harel, 1988).

5 4

32

1

C2

[true]

C1

[false]

[false][true]

α

Figure 2. Simple machine (complete model)

Figure 2 is a State Transition Diagram of a simple
machine. The machine starts at state 1, and upon
execution (by the user) of event “α”, moves along to
either state 2 or state 3, according to whether the
condition “C1” is TRUE or FALSE. The dashed lines
represent transitions that take place automatically and
instantaneously. Thus, if state 2 is reached, the system
moves to state 5 immediately, while if it reaches state 3, it
moves to either state 5 or to state 4 depending on whether
condition "C2" is TRUE or FALSE.

Suppose that the task specification is to drive the system
from state 1 to state 5, via state 3 (because state 2 may
cause some undesired behavior, e.g., deploying thrust-
reversers in flight). To do this correctly, it is necessary to
know whether condition “C1” is TRUE or FALSE,
because only FALSE will lead us to state 5 via state 3.
However, since we do not care whether state 4 is visited
or not, condition "C2" is irrelevant for us. Figure 3(a) is a
reduced, yet adequate, user-model for this machine.

 Figure 3(a). Figure 3(b)

Now let's consider the interaction between the interface
and the user-model and relate this to the regions in Figure
1. The machine we are still dealing with is the one

5

1

α

5

3

1

C1

[false][true]

α

User Model

Machine's Behavior

Task-
Speci fi cat ion

Interface

4

3

2

1

described in Figure 2, and our task specification is to
drive the system from state 1 to state 5, via state 3. The
first case is that our operator (e.g., pilot) has a correct
user-model, but is not provided with an adequate interface
(e.g., indicating whether C1 is true or false). This
situation, in which the user-model is adequate but the
interface is inadequate, is represented by region 2 of
Figure 1. Clearly, in this case, correct task execution
cannot be guaranteed. In the second case, the pilot has an
inadequate user-model. That is, the pilot is not told about
the existence of condition C1, and therefore his or her
user-model looks like Figure 3(b). According to this
user-model, initiating event α always drives the machine
to state 5. A correct display that indicates the status of
condition C1 would not be of any help here! The user
would not be able to relate the status of condition C1
(TRUE, FALSE) to the behavior of the machine. This
situation, in which the user-model is inadequate but the
interface is adequate, is represented by region 3 of Figure
1. Obviously, correct task execution cannot be
guaranteed here. Finally, the worst case occurs when
both the user-model and the interface are inadequate for
the task (Region 4).

AUTOPILOT EXAMPLE

In this section we shall describe a specific autopilot and
its behavior, show the interface, and provide an excerpt
from an incident that took place while using this
autopilot. Specifically, we shall address pilot interaction
with this autopilot during the capture maneuver in which
the autopilot transitions from climb or descent to level
flight (see Degani and Heymann, submitted, for a formal
and model-based analysis of this example).

Behavior

The sequence of actions in using this autopilot to climb to
a higher altitude goes like this: The aircraft is at some
initial altitude (say 5,000 feet). The pilot selects an
altitude to which the autopilot should climb and level-off
at (e.g., 9,000 feet). The pilot then engages a climb mode
such as “vertical speed”, and the aircraft starts to climb.
(Figure 4 is a profile describing this scenario.) The
current altitude of the aircraft is depicted in the pointed
box in the lower left corner and the selected altitude is
depicted in the upper-right box.

Somewhere prior to reaching 9,000 feet, the autopilot
automatically transitions to the “Capture” mode and starts
the (altitude) capture maneuver. In Figure 4 the capture-
start altitude is 7,000 feet. Above 7,000 feet the autopilot
commands a parabolic trajectory in which the climb-rate
varies as the aircraft gradually transitions to level flight
(at 9,000). This trajectory depends on the aircraft's climb-
rate, altitude, and acceleration. The main point is that the
altitude, at which the transition to the “Capture” mode
takes place, varies. The pilot has no pre-knowledge of
this altitude.

Figure 4. Climb profile

Interface

Figures 5(a) and 5(b) are schematic illustrations of the
“Guidance Control Panel” (GCP) and “Electronic
Attitude Display Indicator (EADI)” of this autopilot,
respectively.

5,000

7,000

6,000

9,000

8,000

5,000

Capture

Vert ical
Speed

ALT

Figure 5(a). Guidance Control Panel.

Figure 5(b). Electronic Attitude Display Indicator.

The GCP illustrated in Figure 5(a) includes buttons for
engagement (by the pilot) of climb/descend and hold-
altitude modes. In the top portion of the GCP is a
window indicating the selected altitude setting. The pilot
can reset the altitude setting by rotating the altitude knob.

Information on the current mode of the aircraft is
provided on the “Flight Mode Annunciator” located on
the top portion of the EADI. In Figure 5(b) the current
vertical mode, displayed in the right-most window, is
“Capture” (the “Thrust” and “Lateral” modes of the
aircraft are beyond the scope of this paper). The altitude
tape, which provides the pilot with the current altitude of
the aircraft, is displayed on the right side of the EADI.
By viewing both the GCP and the EADI, the pilot has
knowledge of the GCP altitude setting, the active vertical
mode, and the current aircraft altitude at any time.

Incident

The following is an altitude deviation incident, involving
this autopilot, which was reported to NASA’s Aviation
Safety Reporting System (ASRS). An altitude deviation
(or “altitude bust” in aviation jargon) is a situation in
which the aircraft, for whatever reason, does not level off
at the intended altitude.

On climb to 27,000 feet and leaving 26,500 feet.
Memphis Center gave us a clearance to descend to
24,000 feet. The aircraft had gone to “Capture”
mode when the first officer selected 24,000 feet on
the GCP altitude setting… and the aircraft continued
to climb at approximately 300 feet-per-minute. There
was no altitude warning and this “altitude bust”
went unnoticed by myself and the first officer, due to
the slight rate-of-climb. At 28,500, Memphis Center
asked our altitude and I replied 28,500 and started
an immediate descent to 24,000 feet (ASRS report #
113722).

ANALYSIS

We shall now examine pilot interaction with this autopilot
while in “Capture” mode. The action that we will
consider here is setting the altitude window to a value that
is behind the aircraft – just as it happened in the incident.
We are climbing toward 27,000, the aircraft is now at
26,500 feet, and at this moment we get a clearance to
descend back to 24,000 feet. 24,000 is lower than 26,500
and is behind the direction and current altitude of the
aircraft. Let us consider a similar situation at somewhat
different altitudes. We are at 5,000 feet climbing to 9,000
in “Vertical Speed” mode. At 7,000 the autopilot
transitions from “Vertical Speed” mode (which was
initially engaged by the pilot) to “Capture” mode (which
was automatically engaged by the autopilot). The aircraft
starts the parabolic trajectory to capture 9,000 feet. Now
at an altitude of 8,500 feet we get a new clearance. Let us
see what the aircraft will do:

If we get a clearance to descend and maintain 6,000 feet
and we set this value in the GCU altitude window, the
aircraft will not honor this setting and, instead, continue
its climb at the current vertical speed, indefinitely. This
behavior is called “kill the capture” -- and kill it, it does.
This is exactly what happened in the above-mentioned
incident. The profile depicted in Figure 6 describes this
behavior.

Figure 6. Set altitude to “below” capture-start.

On the other hand, if we get a clearance to descend and
maintain 8,000 feet, and we set this value in the GCU
altitude window, the aircraft will honor this setting, dive
down and capture 8,000 feet (Figure 7).

Figure 7. Set altitude to “above” capture-start.

Capture

Vert ical
Speed

5,000

7,000

6,000

9,000

8,000

8,500

5,000

7,000

6,000

9,000

8,000

8,500

Capture

Vert ical
Speed

The autopilot behavior is perplexing; it responds
differently to the same pilot action. Setting the altitude to
a value behind the current aircraft altitude results in two
different responses: In the first case the aircraft will
continue at the current climb-rate and “kill the capture”.
In the second case the aircraft will capture the newly set
altitude. So how can the pilot anticipate what the aircraft
will do in each case?

It turns out that there is a hidden condition here, that
revolves around the altitude at which the aircraft
transitions to the “Capture” mode (7,000 feet in our
example): If the newly set altitude is below (e.g., 6,000
feet) the “start capture altitude”, then the aircraft will kill
the capture. But if the newly set altitude is above (e.g.,
8,000 feet) the “start capture altitude”, the aircraft will
capture the specified altitude.

Do pilots know about this behavior and the condition?
No. It’s not in the manual nor is it mentioned in ground
school or Initial Operating Experience (IOE) -- it is
practically unknown! Now we are not talking about some
minor deficiency, but a critical maneuver that sometimes
takes place very close to the ground. The pilots’ user-
model is inadequate for the task of capturing an altitude
after resetting the altitude to a value behind the aircraft.
If we go back to our earlier discussion, we have a
condition in which the user-model is inadequate for the
task. This deficiency corresponds to region 3 in Figure 1.

Now, let’s say that we have provided this information to
the flight crews and thereby updated their user-model to
include the condition (“altitude capture start”) and the two
possible outcomes of setting the new altitude.
Presumably now we should be out of Region 3 and in
Region 1 and everything should be OK.

Yes?

Actually, not. The display is also inadequate for the task
– and here is why: To resolve what the aircraft will do we
need to know the altitude at which the autopilot
transitions to capture (e.g., 7,000 feet). But in practice, it
is almost impossible to obtain this value with the current
display. First, the pilot has no preview of this value and
the interface does not display it. Secondly, the transition
to the “Capture” mode happens automatically. In order to
obtain the altitude at which the autopilot transitions to
“Capture”, the pilot must "hunt" for the automatic
transition, and at that very moment look down to the
altitude tape on the interface and catch the aircraft altitude
as it rolls by. Thirdly, this altitude value is not retained
by the display; once the transition takes place, the value is
gone and there is no way to retrieve it. For all practical
purpose, it is impossible to reliably obtain this value. The
current display is indeed inadequate for the task.

To recap, the situation just described actually corresponds
to Region 4 in Figure 1 where both the user-model and
the interface are inadequate for the task: the pilots do not
know about the start-capture condition and the interface

does not provide the start-capture value. Attempts to
solve the problem by updating the user-model to include
this condition will get us out of Region 4 into – Region 2.
Yes, the pilot is now aware of the condition, but the
interface does not provide the capture-start value; the
task-specification and the user-model are now adequate,
but the interface is, still, inadequate. To this end, the
interface is incorrect and correct task execution cannot be
guaranteed.

And here we are stuck. The only way to remove this
deficiency is by modifying the interface: either by
providing the value itself (which will still require the pilot
to perform a mental calculation to resolve what the
aircraft will do) or some qualitative indicator that will
resolve whether or not capture will take place. Finally,
one can also redesign the autopilot behavior, but that, of
course, is beyond the scope of this paper.

CONCLUSIONS

There are two kinds of reactions to such problems –that
is, after the pilots become confused. Some pilots blame it
on themselves, on being inattentive and out-of-the-loop.
Others blame it on the autopilot, write it up in the log as a
malfunction and demand that a mechanic fix the
autopilot.

But the problem, of course, is neither of the above: it’s
not about being inattentive and the autopilot always
checks OK. Such interface inadequacy limits pilots’
ability to interact reliably with the autopilot and generates
confusion, apprehension, and mistrust in automation.
Contrary to common belief, these types of problems,
which unfortunately are not rare in present-day automated
control systems, cannot be sufficiently resolved with
further training, improved situation awareness, or by
updating aircraft manuals.

The deeper issue is not about this specific autopilot or its
interface – it’s about design and evaluation of automated
control systems. The fact of the matter is that the people
who designed it did their best to provide a sound
interface, and the certification officials who approved it
also evaluated it to the best of their abilities. Present-day
automated control systems are very complex and user-
interaction is, inevitably, complex as well; there is no
escape from this reality, at least by today's standards.

The naked truth is that current methods for designing and
evaluating human-automation interactions are, in
themselves, inadequate. Current methods, which consist
of “what-if” questions, cognitive walk-through,
simulations, and experimentation, are simply not
systematic and rigorous enough to cover all possible
pilot-automation interactions. This limitation is what lead
to the design deficiency that we described in this paper.
There is an urgent need for better design and evaluation
methods from avionics vendors, airframe manufacturers,
and certification officials (RTCA, 1999).

The formal approach discussed in this paper is a way to
start considering such human-automation problems from
a more systematic perspective. A perspective that takes
into account the actual behavior of the automation and the
specified operational tasks and then asks whether the
user-model and the interface are adequate for correct and
reliable task-execution. A more ambitious objective is to
develop methods and algorithms for a formal “synthesis”
of the user-model, interface, and task specification
elements. Such a rigorous and systematic methods for
designing and evaluating large and complex human-
automation interaction are indeed feasible. Initial steps
towards the development of such design methods have
recently been initiated (Heymann and Degani,
forthcoming). The increasing complexity of the
automated systems, the lack of systematic
design/evaluation methods, and the diminishing tolerance
to catastrophic failures and its intolerably high cost urge
us to be satisfied with nothing less.

ACKNOWLEDGEMENTS

This work was conducted as part of NASA's base research
and technology effort, human-automation theory sub-
element. The authors were supported by Grant NCC 2-
798 from the NASA Ames Research Center to the San
Jose State University. We gratefully acknowledge the
support of one aerospace firm and its staff for providing
extensive simulator-time and resources necessary to build
and validate the models that underlie this analysis.
Special thanks are due to Captain David Austin for flying
the simulator and providing helpful insights. The authors
thank Rowena Morrison, Lance Sherry, Alex Kirlik,
Immanuel Barshi, and Barry Crane for helpful comments
on an earlier draft.

REFERENCES

Aviation Week and Space Technology. (1995). Automated
cockpits: who’s in charge? Part 1 and 2. 142(5 and 6),

Billings, C. E. (1997). Aviation automation: The search for a
human centered approach. Hillsdale, NJ: Erlbaum.

Degani, A. and Heymann, M. (submitted). Some formal aspects
of human-automation interaction.

Degani, A., Shafto, M., and Kirlik, A. (1999). Modes in
human-machine systems: Review, classification, and
application. International Journal of Aviation Psychology,
9(2), 125-138.

Harel, D. (1988). On visual formalisms. Communications of the
ACM, 31(5), 514-530.

Funk, K., Lyall, B., Wilson, J., Vint, R., Niemczyk, M.,
Surotrguh, C., and Owen, G. (1999). Flght deck
automation issues. International Journal of Aviation
Psychology, 9(2), 109-124.

Heymann M., and Degani A. (forthcoming). Display synthesis
and interface resolution for interactive discrete event
systems.

Indian Court of Inquiry. (1992). Report on accident to Indian
Airlines Airbus A-320 aircraft VT-EPN at Bangalore on
14th February 1990. Indian Government.

Jacob, R. J. K. (1986). A specification language for direct-
manipulation user interface. ACM Transactions on
Graphics, 5(4), 283-317.

Javaux, D., and De Keyser, V. (1998). The Cognitive
Complexity of Pilot-Mode Interaction: A Possible
Explanation of Sarter and Woods' Classical Result. In G.
Boy, C. Graeber and J. Robert (Ed.), Proceeding of the
International Conference on Human-Computer Interaction
in Aeronautics Conference (pp. 49-54). Montreal, Quebec:
Ecole Polytechnique de Montreal.

Mellor, P. (1994). CAD: Computer aided disasters. High
Integrity Systems, 1(2), 101-156.

Norman, D. A. (1990). The 'problem' with automation:
inappropriate feedback and interaction, not 'over-
automation.' Phil. Trans. Research Society London, B 327,
585-593.

Parnas, D. (1969). On the use of transition diagrams in the
design of a user interface for an interactive computer
system. Proceeding of the 24th Annual ACM Conference
(pp. 379-385).

Radio Technical Commission for Aeronautics (RTCA). (1999).
Report of Task Force 4 – Certification. Executive
summary and portions of the report of the report are
available at the following URL -- http://www.rtca.org/.
Washington, DC: RTCA.

Sarter, N. B., and Woods, D. D. (1995). How in the world did I
ever get into that mode? Mode error and awareness in
supervisory control. Human Factors, 37(1), 5-19.

Sherry, L., and Polson, P. (1999). Shared models of flight
management system vertical guidance. International
Journal of Aviation Psychology, 9(2), 139-154.

Woods, D., Sarter, N., and Billings, C. (1997). Automation
surprises. In G. Salvendy (Ed.), Handbook of human
factors and ergonomics (pp. 1926-1943). New York: John
Wiley.

